increases in both reactions, the calculated energies of formation should be higher (less negative) than the experimental values. Also, the correlation correction to the HF ΔE_f should be smaller for $\rm B_2H_7$ ⁻ than for $\rm B_2H_6$.

Our results are summarized in Table 11.

TABLE I1 SUMMARY OF *AHf* CALCULATIONS

	Total energies, au	Hf , keal/mol
BH,	-26.4014	-19.0°
B_2H_6	$-52.8331c$	
BH,	-26.3533^{d}	
$\rm BH_{4}$ -	-26.9232 ^e	$-25.4b$
$B_2H_7^-$	-53.3170	

^a For reaction 1. ^b For reaction 2. ^c Reference 7. ^d Reference 12. **6** Reference 11.

We believe that the basis set for B_2H_0 is of such quality that our value for the energy of formation is essentially a Hartree-Fock value. In view of the reasonable agreement with experiment for the calculated energy of formation of $B_2H_7^-$, we predict that the B-H-B bond is symmetric in the gas phase. However, in the crystal phase, forces could conceivably be sufficient to produce some asymmetry.22

Acknowledgments.—We wish to thank the Office of Naval Research and the Advanced Research Projects Agency for support and the National Science Foundation for a fellowship for D. S. **&I.** We also thank I. M. Pepperberg and D. A. Kleier for assistance in these calculations.

(22) NOTE ADDED IN Proof.-Inclusion of all 14 single and 210 double excitations from the valence shells of minimum Slater basis SCF wave iunctions for BHa, B2H6, and possible transition states has yielded the following results. This correlation correction is -10.6 kcal for reaction 1. Further studies with expanded basis sets will give a more appropriate correlation correction to be added to the HF value of -19.0 kcal for reaction 1. The best transition state discovered so far is centrosymmetric, of C_{2h} symmetry, having two very unsymmetrical hydrogen bridges and a $B \cdots B$ distance of 3.0 **A,** and is less stable than 2BH3 by **2.6** kcal (study in progress by I. M. Pepperberg, D. **A.** Dixon, and W. N. Lipscomb).

CONTRIBUTION No. 1930 FROM THE CENTRAL RESEARCH DEPARTMENT, EXPERIMENTAL STATION, E. I. DU PONT DE NEMOURS AND COMPANY, WILMINGTON, DELAWARE 19898

Electronic Effects of Phosphorus Ligands on the Protonation of NiL4 Complexes

BY CHADWICK **A.** TOLMAN

Received May 16, 1972

Novel cationic nickel hydride complexes formed by protonation of $Ni[POEt)_3]_4^1$ and $Ni[Ph_2PCH_2CH_2$ - $PPh₂$]₂² by strong acids have been reported recently. Solutions of $HNi[POEt)₃1₄$ ⁺ are catalytically active in the coupling of butadiene and ethylene to form hexadienes³ and in olefin isomerization.⁴ We now wish to report that a wide range of similar complexes of the type $HNiL₄$ ⁺ can be formed by these protonation reactions.

(4) C. A. Tolman, *ibid.,* **94,** 2994 (1972)

Equilibrium constants for reaction 1 using H_2SO_4 in
 $H^+ + Nil_4 \stackrel{K}{\Longleftarrow} HNil_4^+$ (1)

$$
H^{+} + Nil_{4} \stackrel{K}{\Longleftarrow} HNil_{4}^{+} \tag{1}
$$

CH30H are shown to depend on the electron donoracceptor character of the phosphorus ligands L.

Addition of strong acids like H_2SO_4 to solutions of zerovalent nickel complexes of the type NiL4 forms $HNiL₄$ ⁺, as shown by the appearance of a symmetrical quintet^{1,5} at high field in the proton nmr spectra (Table I). Though the chemical shift shows no systematic

*^a*Formed *in situ* by the addition of HzS04 to solutions of NiLa. The latter were prepared as described by C. A. Tolman, *J. Amer. Chem. Soc.,* **92,** 2956 (1970). $\frac{b}{c}$ Measured at -20° with respect to internal tetramethylsilane using a Varian HA-100 spectrometer. ^c Uncertainty ± 0.5 Hz, unless noted otherwise. ^d Hydride first reported in ref 1. *e* Hydride first reported in ref 2.

variation, the value of J_{PH} increases quite regularly as the electron-withdrawing ability of the phosphorus ligands increases, judging from the carbonyl stretching frequencies measured for $Ni(CO)_3L$ complexes.⁶

Equilibrium constants for hydride formation (eq 1) with selected compounds were measured spectrophotometrically using H_2SO_4 in CH₃OH at 0° , as described earlier for $Ni[P(OEt)₃]$ ⁷ The results are shown in Table II and Figure 1. The value of K for $Ni[Ph_2-$

HYDRIDE FORMATION CONSTANTS WITH H_2SO_4 IN CH₃OH at 0°

Infrared data from ref 6. b Determined at ambient temperature. \cdot 0.1 *M* L added. See ref 7. *d* Reported earlier in ref 7. **^e**No change in **uv** spectrum on adding 1 *M* HzS04. *f* Value for PPhzEt.

 $PCH_2CH_2PPh_2|_2$ is most uncertain because of the extremely low solubility of the complex in CH₃OH $(\sim 10^{-4}$ *M*). The hydride formed was, however, exceedingly stable.

As expected, the equilibrium constant decreases as the phosphorus ligands remove more electron density from the metal. With $Ni[P(OCH₂CCl₃)₃]$ ₄, the complex with the most strongly electron-withdrawing ligands of

⁽¹⁾ W. C. Drinkard, D. R. Eaton, J. P. Jesson, and R. V. Lindsey, Jr., *Inoug. Chem.,* **9,** 392 (1970).

⁽²⁾ R. A. Schunn, *ibid.,* **9,** 394 (1970).

⁽³⁾ C. **A.** Tolman, *J. Amev. Chem. SOL.,* **92,** 6777 (1970).

⁽⁵⁾ The appearance of the NIH resonance as a quintet is attributed to rapid intramolecular ligand exchange in these labile presumably trigonalbipyramidal five-coordinate complexes. The phenomenon has recently been studied in detail in HM(PF₈)& complexes by P. Meakin, J. P. Jesson, F. N. Tebbe, andE. L. Muetterties, *ibid.,* **93,** 1797 (1971).

⁽⁶⁾ C. A. Tolman, *ibid.,* **92,2953** (1970).

⁽⁷⁾ C. A. Tolman, *ibid.,* **92,** 4217 (1970).

Figure 1.-Variation of protonation equilibrium constant with $\nu_{\rm CO}(A_1)$ of Ni(CO)₃L from ref 6. The solid line and closed circles refer to the NiLa complexes listed in Table 11. The dashed line and open circles refer to the free phosphines.¹⁰

those tested, the extent of protonation was below the level of detection in 1 *M* H_2SO_4 . The equation of the solid line in Figure 1 is log $K = 0.16(2086 - v_{CO})$. Using this equation it is possible to calculate⁸ an approximate hydride formation constant for $HNi(CO)₄$ ⁺ of $\sim 10^{-7}$ M⁻¹, which explains why the hydride has not so far been observed although nickel hydrides have been proposed as intermediates in acetylene carbonylation reactions using $Ni(CO)_4.9$

One interesting aspect of our results is the comparison of NiL4 basicities with those of the free ligands L. Some phosphine pK_a values measured by potentiometric titration¹⁰ in nitromethane are also plotted in Figure 1. The equation of the dashed line is $\log K = 0.55(2076.6 - v_{\text{CO}})$. Though our data and those of Streuli¹⁰ were measured in different solvents, two facts clearly emerge from Figure 1. Protonation on nickel in the $NiL₄$ complexes is only about 0.3 times as sensitive to changes of substituents on phosphorus as is direct protonation of the free phosphine. A greater sensitivity of the electron density on phosphorus to changes in substituents is chemically reasonable and is also indicated by recent ESCA measurements¹¹ of P $2p^3/2$ and Ni $2p^3/2$ binding energies in these complexes. As the substituents become more electron withdrawing, it becomes easier to protonate the NiL4 complex than the free phosphine. This is why we were able to add excess ligand in the cases of complexes **2-5** without interference in determining *K's* for these complexes. In a mixture of PMe₃ and $Ni(PMe₃)₄$ we anticipate preferential protonation of the phosphine.

The subject of transition metal basicity towards Lewis acids has recently been reviewed by Shriver, 12 who pointed out that metal basicity is expected to increase for more electron-donating ligands. This expectation was based primarily on the effect of replacing CO by PPh₃, as in the series $[Co(CO)_{4-n}(PPh₃)_n]$ ⁻, and has now been confirmed for these NiL4 complexes. Enhanced basicity is one factor favoring catalytic activity of these complexes for olefin coupling³ and isomerization⁴ reactions, both of which involve formation of $HNiL_4$ ⁺ as a first step, and is also expected to favor oxidative addition reactions of the conventional type involving cleavage of XY bonds.

(9) R. F. Heck, *J. Amer. Chem SOC..* **85,** 2013 (1963).

(1 1) C. A. Tolman and **W.** M. Riggs, to be submitted for publication.

Acknowledgments.---Donations of $Ni[PPh(OEt)_2]_4$ and $Ni[Ph_2PCH_2CH_2PPh_2]$ from Dr. J. J. Mrowca and Dr. R. **A.** Schunn and assistance from Mrs. Jean L. Read in obtaining the nmr spectra are gratefully acknowledged. The comparison of pK_a 's of L and NiL₄ in Figure 1 was suggested by a referee.

> CONTRIBUTION FROM NORTH AMERICAN ROCKWELL SCIENCE CENTER, THOUSAND OAKS, CALIFORNIA 91360

Titanium(II1) Chloride in Methanol with Small Amounts of Water

BY IRA B. GOLDBERG* AND W. F. GOEPPINGER

Received May 17, 1972

Very little information concerning the solvation of titanium(II1) ions in solution is available in the literature. This information is of interest in the study of $corrosion¹$ as well as in the chemistry of transition metal ions. As part of some spectroscopic and electrochemical studies of titanium, **2,3** the electron spin resonance (esr) spectra of TiCl₃ in methanol-water systems were investigated. We wish to report here the results of an esr investigation of TiCl₃ in methanol- $O-d$ containing $0-0.1 M D_2O$.

Titanium(II1) chloride has been found to form stable complexes which contain chlorides and alcohols, ethers, nitriles, ketones, or amines as ligands. Those complexes containing 2-propanol and sec-butyl alcohol4 have been assigned the structure $[TiCl₂(alcohol)₄] + Cl⁻⁵$ Complexes with methanol that have been isolated or detected in solution include $[TiCl_n(CH_3OH)_{\theta-n}]^{3-n}$ where n is 0-6 and also several seven- and eight-ligand complexes.⁶

The solvation of titanium(II1) has been investigated in acetonitrile,⁷ methanol,⁸ and water.^{8,9} Using nuclear magnetic resonance spectroscopy (nmr), Chmelnick and Fiat⁸ found that the average coordination number of methanol on titanium chloride in methanol is 4, which suggests a complex of the form $[TiCl_2(CH_3OH)_4]$ ⁺. These nmr measurements required fairly high concentrations of TiCl₃.

In order to investigate the nature of titanium(II1) in dilute methanol solutions, esr spectroscopy was selected due to its high sensitivity. Methanol solutions containing from 0.5 to 40 mM TiCl₃ and from 10 to 100 m M D₂O were investigated. Esr studies of titanium(II1) complexes in solutions that have been reported include titanium (III) chelates¹⁰ in aqueous

- (2) E. P. Parry and D. H. Hern, *J. Eleclvochem. Soc* ,119, 1141 (1972).
- (3) E. **P.** Parry, I. B. Goldberg, D. H. Hern, and **W. F.** Goeppinger, in preparation.
- (4) H. L. Schlafer andR. Gbtz, *Z. Anoug. Allg. Chem.,* 828, 1 (1964). (5) R. J. H. Clark, "The Chemistry of Titanium and Vanadium," Elsevier,
- Amsterdam, 1968, Chapter 4.

(6) **W.** Giggenbach and C. H. Brubaker, Jr., *Inovg. Chem., I,* 129 (1968), *8,* 1131 (1969).

(7) J. F. O'Brien, M. P. Eastmdn, andM Alei, Jr *,+bid* ,9, 1000 (1970).

(8) **A.** M. Chmelnick and D. Fiat, *J. Chem. Phys.,* 61,4238 (1969). (9) H. J. Gardner, *Aust. J. Chem.,* 20,2357 (1957).

(10) S. Fujiwara and **M.** Codell, *Bull. Chem. Soc.* Jap., 87, 49 (1964);

S. Fujiwara, K. Nagashima, and M. Codell, *+bid.,* **87,** 773 (1964), T. Watanabe and S. Fujiwara, *J. Mogn.* Resononce, 2, 103 (1970).

⁽⁸⁾ The calculation is based on a value of 2128 cm⁻¹ for the Raman-active $\nu_{\text{CO}}(A_1)$ mode of Ni(CO)4 reported by H. Stammreich, K. Kawai, O. Sala, and P. Krumholz, *J. Chem. Phys.*, **35**, 2168 (1961).

⁽¹⁰⁾ C. **A.** Streuli, Anal. *Chem.,* **82,** 985 (1960); **W.** A. Henderson, Jr., and C. **A.** Streuli, *J Amev. Chem. Soc.,* 82, 5791 (1960).

⁽¹⁾ F. Mansfeld, *J. Electuochem. Soc.,* 118, 1412 (1971).